Category: Gender Diversity 101

Summer of Sexism: Blunders, Blow-ups and Backlash

It’s a bumper season for sexism in science. Earlier this year, the media was abuzz with a startling revelation: sexism in science is a myth! A study by developmental psychologists Williams and Ceci, purportedly showing a lack of hiring bias in academia, became fodder for “clickbait” inflation characteristic of media hype. Recent newsworthy events, however, show that casual sexism is alive and well, unwittingly propagated by the stalwarts who make up the old guard. They’ve left us shaking our heads wondering, what were they thinking?

The Blunders: By now much has been said about the unfortunate remarks uttered by the Nobel Prize winning scientist Sir Tim Hunt while addressing a roomful of women scientists and journalists in Korea.

“Let me tell you about my trouble with girls … three things happen when they are in the lab … You fall in love with them, they fall in love with you and when you criticize them, they cry”.

Sir Tim was speaking from personal experience: his wife Professor Mary Collins used to be his student, with whom he “fell in love in the lab” exemplifying the “relationship drama” that can be so distracting in a professional setting.

No Falling in Love. No crying. Photo: Prof Rajini Rao
No Falling in Love. No crying. Photo: Prof Rajini Rao

Similarly,  former AAAS president Professor Alice Huang, who also married her postdoctoral mentor Nobelist David Baltimore after a lab romance, suggested that young women should tolerate unwanted (and inappropriate) sexual behavior in the work place. Responding on her Ask Alice column to a woman postdoc who asked for advice in dealing with a mentor repeatedly looking down her blouse, Dr. Huang advised her to “put up with it, with good humor if you can”.

(more…)

Astronomical Sexism: Rosetta #ShirtStorm and Everyday Sexism in STEM

The world has been abuzz with news that the Rosetta spacecraft landed on a comet 500 million kilometres from Earth, in an attempt to collect vital data about the origins of our solar system. The aim is to benefit humanity. Unfortunately, this event is also marred for women in STEM and our allies due to the pervasive power of sexism. Rosetta Project scientist Matt Taylor chose to wear a shirt with semi-nude women, effectively telling the world and our next generation of STEM workers that sexism is still very much part of our professional culture.

By the way, this is not the first time he’s publicly worn this shirt. He tweeted that he received the shirt as a present in early October and none of his 2,700 followers on Twitter paid attention. Most worrying is that he is photographed in an office – which suggests he may have worn this shirt to work and none of his management nor colleagues pointed out the inappropriate attire.

This comes only a couple of weeks since The New York Times declared that sexism in academia is dead (as we noted, this claim was based on a highly flawed study). What this wardrobe choice says is that some male scientists in strategic positions for major science organisations do not see equality as a serious issue. Taylor works for the European Space Agency and he is prominently featured on a NASA website.

(more…)

Sexism in Academic Science: Analysis of The New York Times Op-Ed

Here is an examination of the scientific flaws in the recent New York Times (NYT) Op-Ed: “Academic Science Isn’t Sexist.” The Op-Ed authors, psychologists Professor Wendy Williams and Professor Stephen Ceci, put forward various wide-sweeping statements about the effect of gender on academic careers of women scientists. The article outlines the fact that women make up a minority of junior faculty members, particularly in maths-intensive fields like engineering and computer science (25%-30%) and an even smaller proportion in senior positions (7%-15%).

Williams and Ceci argue that much of the empirical studies that established gender inequality in academia are outdated (mostly published prior to the year 2000). They argue that more recent data show that inequality has been diminished in academia. The researchers claim that women are promoted and remunerated at the same rate as men – except in economics. Williams and Ceci further argue that women’s numbers have been steadily growing in the life sciences and psychology. They note that the proportion of women in maths-intensive fields has also been growing, but not as much. Their analysis attempts to explain why this is the case.

The central argument presented in their NYT article is that women would fare well in maths-intensive subjects, “if they choose to enter these fields in the first place.” To put it another way, the problem as they see it, is that gender inequality is a myth, and that the discrepancies between men and women would be reduced if women chose to stay in STEM.

The Op-Ed is based on the co-authors’ study published in November in the journal, Psychological Science in the Public Interest. In their study, Ceci is first author and they are joined by two economists, Professor Donna Ginther and Professor Shulamit Kahn. The research team see that the sex variations within the fields of Science, Technology, Engineering and Mathematics (STEM) represent a “contradiction” and a “paradox.” The logic of their argument is that because there are more women in STEM fields today in comparison to the 1970s, and because there are different patterns of attrition amongst various disciplines, this is evidence that sexism in academia is a moot point. The crux of their argument is simple: if there are differences between men and women’s career trajectories in STEM, these arise from personal preferences, and not due to a culture of sexism.

The are several problems with the Op-Ed, which overly simplifies the body of literature the authors reviewed, but the analysis of study itself is highly flawed. The most glaring issues include the concepts used, such as the authors’ confusion of sex and gender and how these relate to inequality. Another set of problems arise from the authors’ methods. Put simply: the way they measure gender inequality does not match the data they have available, and their interpretation and conclusions of the data are therefore invalid. In science, a study can be seen to be valid when the phenomenon measured matches the instruments used. The concepts, data collection and analysis need to match the authors’ research questions. This is not the case with this study.

Let’s start with the key concept the authors measured: gender inequality, which is also discussed as “academic sexism.”

Sexism in Academic Science
Sexism in Academic Science

(more…)

Stereotype Threat and the Leaky Pipeline in STEM: Our Interview with Professor Chad Forbes

We spoke with Professor Chad Forbes about his research on stereotype threat and how it undermines the success of women in STEM. Chad is a social neuroscientist in the Department of Psychological and Brain Sciences at the University of Delaware.

Social neuroscience is a burgeoning field that uses neuroscience methodologies such as electroencephalograms (EEG), functional magnetic resonance imaging (fMRI) and molecular genetics- anything that indexes neural activity, to inform social psychological theory and test a research hypothesis. Social neuroscience methods examine people in real time and can index their reaction to stimuli- even if these thought processes are unconscious or if the subjects are unaware or unwilling to acknowledge their feelings.

(more…)

Nature vs Nurture: Girls and STEM

This article was originally published on the Nature Soapbox Science blog. It was written by STEM Women managers Zuleyka Zevallos, Buddhini Samarasinghe and Rajini Rao.

In a New England pub after a conference, our male academic colleagues shrug their collective shoulders at the gender imbalance; in their opinion, women drop out of science because their hormones make them “different”. As women in science know all too well, similar examples of bias abound in academia. We read with familiar dismay, therefore, the arguments that girls find science “boring,” that attempts to bridge the gender divide “deny human biology and nature,” and that efforts to achieve gender equality in the Science, Technology, Engineering and Mathematics (STEM) fields are doomed. Attributing the gender gap to biology misses the obvious contribution of societal and institutional biases.

The “girls are not interested in STEM” mantra is itself an example. Knowledge of a prejudicial stereotype can lead to enough anxiety that it becomes a self-fulfilling prophecy. Although initially applied to racial bias in IQ tests, ‘stereotype threat’ can be extended to gender as well. Negative stereotypes are transmitted from parents and teachers to girls. Reminding girls that they are girls just before a math test can impede their performance. This effect can be seen in children as young as age five. The key point is that as adults, we are able to view stereotypes as generalisations about a group. Unfortunately, young children are more accepting of stereotypes, and may implicitly believe that girls are indeed poor at STEM subjects. As girls grow up, these stereotypes affect their identities as STEM professionals. So how do these stereotypes take shape?

The Draw a Scientist Test (DAST) shows that science stereotypes are socialised from an early age. The test has its origins in a pilot study from 1957, in which high school students were asked to describe their image of a scientist. Subsequent research from the 1960s onwards has examined a timeline of when this image is cemented. This research finds that children in kindergarten and the first grade are less likely to draw a stereotypical scientist; that is, a White man with facial hair, who wears a lab coat and glasses, and who is surrounded by lab equipment, formulae and books, making a “Eureka!” style exclamation. By the second grade, however, “the stereotype has began to take root,” due to a combination of how science is taught at school as well as through media images and social ideas and expectations that children pick up from parents, teachers and other influences. By the fifth grade, the stereotype is overwhelmingly fixed. A review study of 50 years worth of international research on the DAST demonstrates that, across cultures, “the stereotype of scientists being male has largely endured since 1957.” More specifically, the research shows that in Western cultures, this image is of a White male, even amongst minority students. However, children exposed to female scientists, via a combination of visits by women scientists in the classroom and by talks and readings about women’s contribution to science and their careers, are more likely to draw both women and men as scientists. Studies demonstrate that teachers themselves can contribute to these stereotypes, by giving boys more attention in class, and by rating their abilities higher than girls, even when girls get the same test scores as boys. Conversely, “intervention programs” for teachers, including career information and weekly visits by women researchers to the classroom, as well as short courses with follow-up visits, are subsequently less likely to result in stereotypical DAST results amongst students. This is because the teacher’s bias has been actively addressed, leading to the reinforcement of diversity in their teaching.

Despite the fact that people are socialised into believing that girls can’t do science, popular culture blames the individual; young girls are often chastised Don’t get your dress dirty, or Be careful, why don’t you hand that to your brother, as a recent viral video reminded us. If only girls were more confident. If only girls spoke up and asked more questions in class. If only they actively looked for mentors. Then they could easily overcome this stereotype threat and perform just as well as boys in STEM subjects. Unfortunately this “leaning in” viewpoint is naive because it ignores the institutional disadvantages contributing to the academic exclusion of women and minorities.

Sexual harassment is widespread in academic fieldwork. Women trainees are the primary targets with the perpetrators being predominantly senior professional males. Female undergraduates in male dominated fields report higher levels of sex discrimination, and are more likely to consider changing majors. Another study showed that high-achieving male biologists train fewer women than men in their laboratories, and that these men predominantly fill Assistant Professor slots in academia. In the same study, biomedical science male postdocs are 90% more likely than women to have an adviser who is a Nobel laureate. Not only is there a ‘leaky pipeline’ problem, the plumbing itself is broken.

Not only is there a ‘leaky pipeline’ in STEM, the plumbing itself is broken. Image credit: STEM Women
Not only is there a ‘leaky pipeline’ in STEM, the plumbing itself is broken. Image credit: STEM Women

It is social conditioning, unconscious biases and institutional practices that create an environment where girls feel unwelcome and insecure in STEM fields. UNESCO data show that women are disadvantaged in STEM, with only one in five nations achieving equality. But the cultural variation in itself tells us that it is socialisation and policy intervention, not biology, that matters. Research shows that institutional gender bias develops in several phases. First, children lack female scientist role models from primary school. Second, young undergraduates learn that science privileges a masculine culture, which makes it hard to imagine their career path. Third, diversity barriers are witnessed first-hand by early career researchers. Both male and female faculty are less willing to hire women applicants with the same credentials as men. Given these clear prejudices, we must move away from lazy explanations that attribute women’s under-representation in STEM to their biology. Instead, we must acknowledge that the system actively discourages women in ways both obvious and insidious. We must move away from the individual and address the broader narrative of everyday sexism.

Practical ways to tackle this problem include diversity training for hiring committees and better mentorship programmes for female graduate students and postdocs. Another avenue for change is to address stereotypes and their effects. Research mapping neurophysiology during tests on STEM subjects show that there are no cognitive differences in men and women’s performance in tests until stereotype threat is triggered. Women perform comparably well until they are reminded about their gender, at which point their working memory and performance are negatively impacted. When girls and women are made aware of their minority status, they become hypervigilant about negative feedback, discouraging them despite their success, even if they are high achievers. Professor Chad Forbes is a social neuroscientist from the University of Delaware who studies the impact of negative stereotypes on individuals. One aspect of his research is looking at different ways to combat stereotype threat. The most effective strategy remains acknowledging and understanding the existence of stereotype threat and addressing its consequences, such as through training. Active intervention at the institutional level also leads to positive change. Already, some colleges are reporting huge improvements: at Carnegie Mellon University, 40% of undergraduate incoming class in computer science are women, a welcome contrast to the dismal 18% of graduates in the U.S., and at Harvey Mudd College, more than half of the freshman engineering class this year were women. Their strategies ranged from featuring women on their brochures and as tour guides, to training teachers and hosting camps for high school students.

Why should we care if girls remain underrepresented in STEM? Apart from basic fairness, if we want our best and brightest working on innovative ideas and creative solutions, it makes little sense to potentially abandon half the population. We already face many hurdles; lack of funding, lack of jobs, and pushback from science denialists backed by populist politics. We need all hands on deck to forge ahead.

We must look to nurture, not nature, for change.

BroScience: Sexism in Click Bait Science News

ScienceAlert, a pop science news site, has published a “science news” story using a sexist image, which prominently features a woman’s breasts. Several issues arise about the use of sex to sell science publishing. One major issue relates to links between “everyday sexism” women encounter through their daily lives, including through the media, and the professional barriers that women face in STEM careers. Another issue relates to the scientific value of using sexism to specifically sell pop science reporting. The image is designed as “click bait.” We’ll analyse this in the context of the science in the article and the subsequent discussion on ScienceAlert’s Facebook page. The issue we highlight is how the blurring of sexist marketing and pop science news leads to a decreased public understanding of science, while also hurting educational campaigns to boost public awareness about women’s contribution in STEM.

Science: You're Doing it Wrong, ScienceAlert. Sexist imagery represents “click bait” & a weak commitment to  equality.
Science: You’re Doing it Wrong, ScienceAlert. Sexist imagery represents “click bait” & a weak commitment to equality.

(more…)

Everyday Sexism in Academia

%d bloggers like this: